An Ideal Solution to Thermal Issues in PCB and PCBA

2018-11-23 17:49Writer: qyadminReading:
 
The rising specs of electronic products leads to extensive applications of large scale integrated circuits (ICs) and Surface Mount Technology (SMT) assembly in modern electronics manufacturing services. Moreover, circuits have been moving towards miniaturization, light weight, multiple functions, high performance, high speed and high reliability. Constant expansion of component density causes gradual increasing of heat flow density. As far as semiconductor devices are concerned, too high temperatures will possibly lead to variation on electrical performance. Whenever Tj (junction temperature) rises by one time, thermal breakdown will be caused if serious. If thermal issues fail to be suitably solved, component specs will definitely suffer from instability, further reducing products' stability and reliability with their missions hung in the air. In conclusion, thermal issues of Printed Circuit Boards (PCBs) are so protruding that much attention has to be especially paid to them for sake of high performance of electronic products.
  Up to now, thermal dissipation methods leveraged by high-tech circuits can hardly meet the demands on thermal dissipation set by later circuits, calling for a new type of thermal solution. Based on discussion on some prevalent thermal dissipation methods used in electronic products, Metal Core PCB (MCPCB) is introduced as a solution to thermal issues in advanced circuits.

 MCPCB for Better Thermal Dissipation

  • Introduction of MCPCB

  Along with constant development and optimization of materials science and processing technologies, MCPCBs have been extensively applied in the US and Japan. Under equivalent external application environment, MCPCBs perform more excellently than any other type of PCB boards in thermal dissipation, representing a high level of worldwide high-power electronics assembly.
  MCPCBs take advantage of thermal-conductive metal, copper for example, in some layer of a multilayer PCB. MCPCBs dissipate heat externally through metal core or carry out fast thermal dissipation by getting connected with external heat sink. When it comes to high density circuits, PCB boards compatible with SMT assembly or circuits with so many through hole components assembled on, highly thermal-conductive MCPCBs have to be picked up. A metal core with good thermal dissipation is first embedded into a multi-layer PCB whose layers can be connected through plated through holes that can conduct heat at metal core and its surface. MCPCB structure can be displayed in the following figure.
 An Ideal Solution to Thermal Issues in PCB and PCBA 


  • Merits of MCPCB

  Compared with traditional thermal dissipation modes, MCPCBs feature unbeatable merits on thermal dissipation. MCPCBs can improve products' power density and reduce the needs to assemble radiators and other hardware. Moreover, product volume can be shrinked with hardware and assembly cost going down. Finally, MCPCBs play an active role in increasing products' reliability and shielding electromagnetic wave with eletromagnetic interference downsized.
  Due to large copper density, MCPCBs share obviously better quality than any other type of PCBs. However, application of MCPCBs will not bring forward higher weight due to fewer applications of radiators and accessories that are usually equiped on other types of PCBs. Two tips concerning MCPCBs can be stuck to when deciding on MCPCBs:
  Tip#1: Agreeable copper core thickness should be selected;
  Tip#2: Aluminum core PCB can be selected as well.

pcb backup board
pcb back up board backup material